CG News

OctaneRender 2020.1 XB1

Octane 2020.1がテストリリースされたようです。また、OctaneRenderは現在ブラックフライデーセール中のようです。元の価格いくらだっけ。

永久ライセンス

  • 12か月のメンテナンスプラン 699 €
  • 24か月のメンテナンスプラン 899 €

年間サブスクリプション

  • 22 .50€/月
  • 29 0.99€/月

https://render.otoy.com/forum/viewtopic.php?f=7&t=73237

新機能2019.2以降の新機能と改善点

  • Optix 7:主要なRTXの改善-安定性、速度、メモリフットプリント
  • ACES:新しいワークフローと画像コンテナーファイルレイアウト
  • Maxon Cinema 4D GPUノイズ:テクスチャ、ボリューム、OSL、Vectron、ディスプレイスメント
  • 新しいHosek-Wilkieスペクトルスカイモデル
  • パーティクルとストランドポイントの属性
  • ユニバーサルカメラ2:スプリットフォーカスと光学ケラレ
  • LiveDBのキュレートされたOSLプロシージャルシェーダー
  • Houdini 18 SolarisビューポートのHydraレンダーデリゲート
  • 高度なディスプレイカラー管理システム| OCIO
  • Round Edgesアーティストコントロールの改善
  • スカルプトロン
2019.1以降の新機能と改善点
  • SSSの改善とランダムウォークSSS
  • スペクトルヘアマテリアル
  • ボリュームサンプルの位置ディスプレイスメント
  • スペクトル領域/球体プリミティブ
  • ボリュームステップおよびシャドウステップ
  • 新しいユニバーサルダートシステム
  • Vectronボリューム

Hosek-Wilkie Skyモデル

Hosek-Wilkieモデルを日光環境に追加しました。特にかすんでいる条件や地平線に近い他の実装よりも、より現実的で詳細な結果を生成します。デイライト環境ノードのドロップダウンデイライトモデルをクリーンアップするために、Old Daylight ModelをPreetham Daylight Modelに、New Daylight ModelをOctane Daylight Modelに名前を変更しました。前と同じように、空の色と夕焼けの色。

Octane昼光モデルでのみ使用されますが、地色はHosek-Wilkieモデルの空の大気散乱にも含まれています。これは微妙ですが目に見える効果です。たとえば、森林の現実的な空をレンダリングするには地色を濃い緑色に設定し、雪の多い風景の現実的な空には地色を白に設定します。

Hosek-Wilkie 日光モデルの両方でレンダリング同じシーンの比較

ユニバーサルカメラ

新しいユニバーサルカメラは、他のOctane組み込みカメラの既存の機能の多くを公開し、次のような多くの新機能で拡張します。

  • 収差
  • 開口部のテクスチャ
  • キューブマップレイアウト(6x1、3x2、2x3、1x6)
  • ねじれ
  • 魚眼レンズ
  • DOF設定の改善
  • 光学ケラレ
  • スプリットフォーカスジオプター

カメラを2つの別々の領域にフォーカスできるスプリットフォーカス機能を使用したサンプルレンダリング。

カラー管理の表示

Octaneで使用するカラープロファイルを指定できるようになりました。ビルトインプリセットに加えて、ICCおよびICMプロファイルもインポートできます。これはすべてのプラグインとLua API経由でも利用できます。

 

ACESイメージコンテナーファイルレイアウト

Academy Color Encoding System(ACES)OpenEXRファイル(IEEE ST 2065-4:2013)のエクスポートのサポートを追加しました。Octaneスタンドアロンでは、これはレンダーパスエクスポートダイアログのオプションとして追加されました。現在のレンダリングに加えて、ディスクメニューに保存します。いつものように、これはすべてのプラグインとLua API経由でも利用できます。ビルトインCinema 4Dノイズシェーダー

ビルトインCinema 4Dノイズシェーダー

Octaneは現在ネイティブCinema 4Dノイズの生成をサポートしています。 つまりCinema 4Dプラグインのユーザーは、Maxonの組み込みノイズシェーダーをOctane内で直接使用できます。

Cinema 4Dノイズシェーダーを使用するシーンは、ORBXとしてエクスポートし、完全にサポートされたスタンドアロンでレンダリングすることもできます。

ラウンドエッジシェーダーの改善

より正確なラウンドエッジシェーダーを更新して、より広範なシナリオでより良い結果を生成しました。これには、エッジ法線の評価に使用するサンプル数を指定できる新しいオプションも含まれます。

画サンプルが多いほど、より正確な結果が生成され、各シーンに応じてレンダリング時間が長くなります。これらの変更は、Octane 2019にもバックポートされます。

LiveDBの新しい手続き型シェーダー

カスタマイズ可能なOSL手続き型シェーダーの完全に新しいコレクションがLiveDBに追加されました。 これらには、新しいパターン、ノイズ、ボリュメトリックシェーダー、その他の効果、および有用なユーティリティが含まれます。

新しいライブラリは、LiveDBのOTOYセクション内にあります。

Houdini 18のHydraレンダーデリゲート

Houdini 18のOctane 2020.1はSolarisビューポートの完全に機能するHydra Renderデリゲートとして動作し、USDプレビューサーフェスとHydra APIによって公開されるライトをサポートします。

RTXサポート

2020.1ではレイトレーシングを高速化するRTXサポートを追加しています。 NVidiaカードのRTXは、Octaneに次のレベルのパフォーマンスをもたらします。この実験リリースでは三角形メッシュトレースを実装しましたが、シーンに大きく依存しますが、レイトレーシングのパフォーマンスが500%も向上するのを目撃しました。これは、特定のシーンのレンダリングの実際にレイトレーシング操作に費やす時間とシェーディングに費やす時間に応じて、異なるスピードアップに変換されますが、ほとんどの場合、少なくともある程度の顕著なゲインが見られるはずです。

以前の実験的ビルドとは対照的に、VulkanRTに影響するいくつかの問題がまだサードパーティによって解決される必要があるため、光線追跡バックエンドを切り替えてOptiXを使用することにしました。この変更により、ほとんどのシーンの全体的なレンダリングパフォーマンスが向上しますが、特に複雑なシーンでは、VRAMの使用量が以前の約半分に削減されます。

サポートされているデバイスでRTXを有効にするには、NVIDIAドライバーバージョン435.80以降が必要です。以下は、RTXオンモードとRTXオフモードで速度が向上したシーンの例です。

ランダムウォークSSS

ランダムウォークメディアを追加しました。このミディアムノードは他のミディアムノードの従来の吸収/散乱カラースペクトルとは対照的に、予想されるSSSカラーを指定するためにアルベドテクスチャを取り込みます。また、色の半径のテクスチャを指定することもできます。これは光が媒体に散乱する距離を表します。

ランダムウォークに加えて散乱/吸収テクスチャへの入力として任意のテクスチャを提供できるように、古いメディアを修正しました。ボリュームにそれらを使用する場合を含む。

それ以外に媒体内のバイアスのない散乱とバイアスのある散乱を補間するバイアススライダーも導入しました。バイアス散乱法(バイアスが1.0の場合)を使用すると収束が速くなりますが、曲率の高いメッシュの2つの方法を混在させることもできます。

ランダムウォークSSSは他の以前のミディアムノードと同様の既存のマテリアルにアタッチできます。さらにレイヤードマテリアルと組み合わせて使用​​して、スキンマテリアルなどをシミュレートできます。

ランダムウォークSSSの実際の例を以下に示します。ここでは拡散スロット(左)の拡散素材とアルベドテクスチャを比較します。 0.0バイアスの中間散乱アルベド(中央)、vsバイアスが1.0の中間散乱アルベドとしてアルベドテクスチャを使用する新しいランダムウォークミディアムノードの拡散マテリアル(右)。画像からわかるように、古い散乱法を使用すると(0.0バイアス)、媒体内で光線が失われるために表面下散乱がかなり暗くなりますが、新しいランダムウォークSSSを使用すると(1.0バイアス)、表面下散乱効果は、媒体内部のエネルギーをそれほど失いません。

スペクトルヘア素材

Octaneの一般的なヘアレンダリングのリアリズムを改善する2020.1に新しいヘアマテリアルを実装しました。 ヘアマテリアルと従来の拡散/スペキュラマテリアルの違いは、ヘアマテリアルでは割り当てられたジオメトリが厳密にヘアスプラインであると想定しているため、ヘアジオメトリで発生するマルチスキャッタリングエフェクトの事前統合が可能です。

ヘアマテリアルには独自のパラメータセットがあり、ヘアのさまざまなカラーモード、およびヘアのストランドに沿ったさまざまな散乱挙動の複数の粗さパラメータを使用できます。

以下の画像は、縦方向の粗さが低い(左)から高い(右)まで変化する髪のレンダリングを示しています。

以下は、低(左)から高(右)まで方位角の粗さが変化するヘアマテリアルの画像です。

ボリュームサンプルディスプレイスメント

ボリュームサンプルのディスプレイスメントにより、任意のテクスチャを使用してボリュームグリッド内のすべての位置でサンプリング位置をシフトできます。 ノイズの場合はボリュームデータをまったく変更せずにディテールを追加でき、リアルタイムで調整できます。

Vectronボリューム

Vectronを使用してレンダリング時にボリュームを作成できるようになりました。 ボリュームの散乱と吸収へのSDF入力を使用することにより、同じオブジェクトを使用してサーフェスの代わりにボリュームを定義できます。

Spectron area /球プリミティブ

2020.1の2つのデフォルトライトプリミティブ(ジオメトリを含む)を追加しました。

  • Spectron area プリミティブ
  • 分光球体プリミティブ

ジオメトリレベルで両方のライトタイプの基本的なプリミティブスケーリングを許可し、ジオメトリ変換のために位置ノードを併用できます。 また、受信メッシュサーフェスの立体角を考慮して、これら2つのライトプリミティブのライトサンプリングアルゴリズムを改善しました。 これにより、直接光サンプリングのノイズ低減の改善が可能になり、通常、従来のメッシュ光サンプリングの使用と比較して、より高速で画像の収束が改善されます。

クワッドライトをさらにスポットライトに変更できるようにするorbxを含めました。ここで追加のパラメーターの例を示します。 広がりを制御すると、光が放射する方向性を制御できます。

次の3つの画像は、Spectronの球体光と従来のメッシュ光(ピクセルあたり1サンプル、10サンプル、20サンプル)を使用した画像のノイズへの影響を示しています。

ボリュームステップとシャドウステップ

ミディアム/ボリュームミディアムノード内のステップ長は、一般的なレイステップ長とシャドウレイステップ長に分離されます。 デフォルトでは、これらは以前のバージョンのOctaneと同じ値にロックされています。 この新しい機能を使用すると不要な場合に不要なレイマーチングを回避するために、それらを独立してシャドウレイのレイステップ長を個別に増加させることができます。これによりボリュームトレースの速度が向上し、最終レンダリング時間が短縮されます。

以下は、ボリュームレイマーチをさまざまなステップ長とシャドウステップ長で比較した画像です。

新しいユニバーサルダートシステム

ダーティテクスチャノードは、柔軟性を高めるための追加パラメーターにより2020.1で改善されました。 2020.1より前ではダートノードは均一なコサインサンプリング法を使用して、マテリアル表面からの光線を追跡しました。

2020.1で、ダートノードにバイアスをかけるためのパラメーターをいくつか導入しました。これにより、レイの広がりを制御し、コサインサンプリング方式ではなくコーン型にすることができます。 また、Octane 2020.1より前のように、表面の法線に対してより均一に、またはより均一にダートレイの分布を制御できるようになりました。さらに、ダートノードの半径をテクスチャ入力に変更しました。 サーフェスポイントのトレース距離を空間的に制御します。

汚れのテクスチャは、ビジュアライズのためにグラウンドプレーンにアタッチされています。 スプレッドが低いほど常に一方向にダートレイをサンプリングするため、ダートはよりシャープになります。

汚れの分布により、汚れの光線は法線方向または法線+バイアス方向により集中し、左の画像はデフォルトの1.0分布(均等に分布した汚れの線)で、右の画像は1000.0分布(法線+に集中) バイアス方向)。

以下は汚れ除去とバイアスのない汚れと偏った汚れの比較を示します。

コメントを残す